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Abstract 

This report will investigate the frequency response of an LCR circuit, in terms 

of amplitude and phase behaviour, as a function of the damping resistance in 

the circuit. The frequency of the amplitude resonance and its variation with the 

damping resistance will be studied. The quality factor Q as a function of 

damping will be determined. The phase difference between the driving voltage 

and the circuit response as a function of frequency of the driving voltage for 

high and low damping will be analysed. 
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2 Introduction 
2.1 The LCR Circuit 

Diagram 1: An LCR circuit 
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An LCR circuit (a circuit with inductance L, capacitance C and resistance R – 

see diagram 1) oscillates in simple harmonic motion (SHM) in response to an 

AC driving voltage. The response of the circuit can be quantified by measuring 

the voltage across the inductor or the capacitor, the capacitor is chosen in this 

investigation. Applying Kirchoff’s second law to each of the components, it can 

be show  that any time t, the charge q on the capacitor is given by:  
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L(d q/dt ) + R(dq/dt) + q/C = Eocos(ωt)     (1) 

Eo is the Amplitude of the driving voltage and ω is the angular 

cy of the driving voltage. ω is related to the linear frequency ƒ  by: 

ω = 2πƒ         (2) 

n 1 has the solution of the form: 

q = qocos(ωt+φ)        (3) 

o is the maximum charge that appears on the capacitor and φ is the 

ngle between the voltage across the capacitor and the driving voltage. 

ws that the response of the circuit oscillates with the same frequency 

riving voltage, but at a phase difference of φ (see section 2.2 for more 

 the phase relationship). 

plitude of the voltage across the capacitor is given by: 

Vc = Eo / C √ [ω2R2 + L2(ω2 - ωο
2)2]      (4) 

ο is the natural frequency of the circuit, and can be calculated using: 

 ωο = √(1/LC)         (5) 
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2.2 Phase Relationship Between the Driving and Response Voltages 
The signals of both the driving voltage from the oscillator and the response 

voltage across the capacitor can be plotted on the same axis. Diagram 2 

shows this for cases where the frequency of the oscillator is less than the 

natural frequency of the circuit (diagram 2a), where they are equal (diagram 

2b) and where the oscillator frequency is greater than the natural frequency 

(diagram 2c).  

Diagram 2a: ω < ωo
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Diagram 2b: ω = ωo
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From these diagrams it can be seen that for ω < ωο, the two signals are nearly 

in phase, for ω = ωο the two signals are 90° or π/2 radians out of phase, and 

for ω > ωο the phase difference is 180° or π radians. 

 

2.3 Resonance 

For the case of ω ≈ ωο i.e. when the frequency of the driving voltage is near to 

the natural frequency of the circuit, resonance will occur. Resonance is the 

term used to describe maximum amplitude of oscillation, i.e. when the 

response of the circuit is at its maximum value. 

By differentiating equation 4, the angular frequency at which resonance 

occurs is found to be: 

ωmax
2 = ωο

2 – R2/2L2        (6) 

This shows that in the presence of a damping resistance, resonance does not 

occur at the natural frequency, but at a lower frequency depending on the 

damping resistance R. 

By substituting ω = ωο into equation 5, the magnitude of the voltage across the 

capacitor at resonance is found to be: 

Vc
(res) = Eo / ωοRC        (7) 

And hence it can be seen that the magnitude of this maximum also depends 

upon the damping resistance R. 

 

2.4 The Q Factor 
The effect of this is that for lower damping, the amplitude resonance curve (Vc 

against ω) is sharper. The sharpness of the curve is quantified by the Q factor, 

which is defined to be: 

Q = ω/∆ω = ƒ/∆ƒ        (8) 

Where ∆ω is the width of the resonance curve between two points, ω1 and ω2 

at which:  

Vc = Vc
(res)/√2         (9) 

These points correspond to the frequencies at which the power being 

absorbed by the circuit is half that of the maximum, i.e. they are the half power 

points. ƒ and ∆ƒ are the corresponding linear frequencies, given by equation 

2. The Q factor is also defined by: 

Q = (1/R)√(L/C)                  (10) 
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3  Study of amplitude resonance as a function of damping 
3.1 Apparatus Set-up 
 

For this investigation an LCR circuit with the following specification is used: 

• L = 30 mH  ± 2% 

• C = 1000 pF  ± 2% 

• R is variable from 0 – 10KΩ  ± 0.1% 

• Variable frequency oscillator with range 1Hz to 100Khz and amplitude 12V 

• Frequency meter with range 20Hz to 10Mhz ± 0.001% 

• Oscilloscope with accuracy ± 3% on both axis 

See diagram 3 for the set-up: 

 

Oscilloscope Frequency meter 

Eocosωt C 

LR 

Diagram 3: The circuit set-up 
 

 

Using the values of L, C and R given above, an estimate for the natural 

frequency was calculated using equation 5 and equation 2: 

ƒο = (1/2π)√(1/LC) = 29.06 ± 0.41 KHz               (11) 

 

(Note that formulae for errors dealt with in this investigation are listed in the 

appendix) 

 

 Page 6 of 14 



2B30 Formal Report Simon Hearn Dr Doel 

3.2 Experimental Method 
 

The peak to peak amplitude of the voltage across the capacitor was measured 

at varying driving frequencies around the estimated natural frequency, i.e. 5 – 

75 KHz. The frequency was measured using the frequency meter connected 

across the oscillator. The voltage is taken from the peak to peak 

measurement of the oscilloscope connected across the capacitor. As the 

frequency of the oscillator approached the natural frequency of the circuit, 

more results were taken to define the natural frequency with higher accuracy. 

A set of data was taken for values of R = 0Ω, 1000Ω, 2000Ω, 3000Ω, 4000Ω. 

A graph of driving frequency against output voltage was plotted for each value 

of R (see graph 1).  

 

3.3 Experimental Results 
 

Graph 1 shows the resonance curves at different levels of damping. The R=0 

line shows clearly that the circuit reaches resonance at ω= 25KHz. Looking at 

equation 6 and accounting for the fact that there is a resistance in the circuit 

other than that of the resistor, it is seen that this experimental value for 

maximum ω is consistent with the predicted value of 29KHz. The missing 

resistance will be investigated in a more detailed way later on. It can also be 

seen from graph 1 that the peak of the resonance curves are shifted to lower 

frequencies as the resistance is increased. This is also consistent with 

equation 6. A more quantitative comparison of the frequencies predicted using 

equation 6 and the experimental maximum frequencies from graph 1 are 

shown in table 1 of the appendix. The discrepancies between the two sets of 

data are again due to the fact that not all the resistance in the circuit is 

contained in the value of R used in the calculation of maximum frequency.  
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3.4 Analysis of Results – Determination of the Q Factor 
 

From graph 1 it can be seen that the resonance curves get sharper as the 

resistance decreases. The sharpness of the curve can be quantified by the Q 

factor as described in section 2.3. Measurements and calculations of the 

measured Q factor, Qm, the theoretical value Qt and all corresponding 

uncertainties can be found in table 2 of the appendix. 

The values of Qm and Qt are not seen to be consistent with each other. The 

discrepancies are noticeably less at higher resistances, this suggests an 

unmeasured resistance or alternative energy loss in the circuit. In order to 

correct for this unmeasured resistance, its magnitude was found. This was 

done by plotting a graph of 1 / Vc
(res) against R. From equation 7 it can be seen 

that: 

Rtotal ∝ 1 / Vc
(res)                 (12) 

Where in practice: 

Rtotal = R + Rmissing                  (13) 

Therefore: 

R = k / Vc
(res) - Rmissing                 (14) 

Where k is the constant of proportionality. 

Hence it was expected that the graph of 1 / Vc
(res) against R would be a straight 

line with negative x-axis intercept equal to the missing resistance. A computer 

program was used to calculate a least squares fit of the data, it gave the R-

axis intercept or Rmissing as: 

Rmissing = 720 ± 70 Ω                 (15) 

The values of Qt were recalculated using equation 13 for Rtotal rather than just 

R. These can be seen in the last column of table 2 in the appendix. 

The corrected values of Qt are very consistent with the measured Q values, all 

apart from the R=3000Ω and R=4000Ω results are within accepted error 

boundaries. 
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3.5 Uncertainty Analysis 
 

The major source of uncertainty in this experiment is the unmeasured 

resistance and although its magnitude had been determined, its origin is still 

unknown. It was first thought that the major contributor to this was the 

resistance in the oscillator, also the resistance in the wires and the inductor 

would have added to the unmeasured resistance. These factors were 

measured. To measure the resistance of the oscillator the amplitude of the 

voltage across the oscillator was measured on its own. Then a resistance was 

introduced in parallel with the oscilloscope so that the amplitude of the voltage 

was decreased to half its original value. This additional resistance is the 

resistance of the oscillator (Rosc). This was measured to be: 

Rosc = 75 ± 10 Ω                 (16) 

The resistances of the wires (Rw) and the inductor (Rl) were measured using a 

multimeter: 

Rw = 0.8 Ω                  (17) 

Rl = 75 Ω                  (18) 

It was obvious that these results did not match up with the unmeasured 

resistance at all, hence there must have be another source of energy loss in 

the circuit.  After further consideration of the circuit, the inductor coil was 

thought to be the source of this energy loss through the process of magnetic 

hysteresis. As the current coil is forced back and forth by the AC supply, a 

small amount of energy is lost each cycle. This is due to the induced magnetic 

field, being forced to change direction with current. This causes eddy currents 

in the core which then causes heating. Since the frequencies used are so 

high, the effect of this is that a lot of energy is being lost per second.  
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4 Determination of Phase Angle 
4.1 Apparatus Set-up 
The relative phase of the voltage across the capacitor with respect to the 

output voltage of the oscillator can be determined by displaying both signals 

on the oscilloscope simultaneously. It can be set up so that the oscillator 

voltage (Eo) determines the deflection in the x direction and the voltage across 

the capacitor (Vc) determines the y deflection. The result of this is a Lissajous 

ellipse. The ellipse is formed by the oscilloscope spot being driven in simple 

harmonic motion in both directions at the same frequency. 

  

4.2 Experimental Method 
The phase difference between the two sources can be determined from the 

measurements of the ellipse (see diagram 4). 

Diagram 4: The Lissajous
 

In diagram 4, ab is the distance between the y intercepts and cd is the 

distance between the max and min points. The phase angle φ is related to ab 

and cd by: 

Sin φ = ab/cd                  (19) 

If the ellipse was inclined to the right then 0 <φ< π/2. If it was inclined to the 

left then π/2 <φ< π. A vertical or horizontal ellipse or a circle indicated that 

φ= π/2. A straight line inclined to the right indicated φ = 0. A straight line 

inclined to the left indicated φ = ±π. 

Measurements of ab and cd were taken while the frequency of the oscillator 

was varied from 10KHz to 50KHz. This was carried out for both low damping 
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(R=0Ω) and high damping (R=4000Ω). Graphs of frequency and phase angle 

were plotted for low and high damping, along with the uncertainties associated 

with the measurements (see graph 2). 

 

4.3 Experimental Results 

Graph 2: Phase angle against driving frequency for low and high 
damping
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The errors seen in this graph arise from the errors in reading the oscilloscope. 

See section 6.22 for the formulae used. 

 

4.4 Analysis of Results 
The shape of graph 2 is consistent with the theory introduced in section 2.2. It 

can be seen that for both low and high damping, the phase difference tends to 

zero when ƒ << ƒο; equals π/2 when ƒ ≈ ƒο and tends to π when ƒ >> ƒο. 

When analysed more quantitatively φ = π/2 at ƒ = 25.5 KHz for the R=0Ω case, 

which is very consistent with the previous result of ƒο = 25 KHz. For the 

R=4000Ω case, φ = π/2 at ƒ = 27.5 KHz which is quite a bit larger than the 

previous result. But since the errors in this region are so high, the discrepancy 

in this value of ƒο is accounted for. 

The general shape of the curves is consistent with theory because a larger 

damping effect will tend to slow the response of the capacitor, therefore the 

signal across the capacitor will lag behind the output signal more, hence the 

phase graph will be more stretched out, as seen in graph 2.  
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5 Conclusion 
 

Looking at the final results of the Q factor (table 2 in appendix) it is clear that 

the measured values are fairly precise. The errors in the measured value 

mostly due to the uncertainty in reading the graphs. More points plotted 

around the Vc
(res)/√2 area in graph 1 would have led to a more accurate 

measurement of the half power width ∆ƒ. This therefore would have affected 

the value of Qm. Also the half power height of the R=4000Ω curve was 

calculated at less than the starting height of the curve and therefore had to be 

taken as 12V. This led to a lower value of ∆ƒ, which in turn led to a greater 

value of Qm than expected. But with these errors aside, the general trend that 

the Q factor decreases as damping increases can easily be seen here. Also 

this experiment has shown the relationships of amplitude resonance and 

phase difference as functions of damping for LCR circutis. 

 

Further refinements to this experiment would be to confirm that the energy 

loss in the inductor is indeed the major contributor to the unmeasured 

resistance mentioned in sections 3.4 and 3.5. This could be done by plotting a 

hysteresis curve of magnetic field strength over a cycle. The energy loss can 

be estimated from the area under the curve. This is very tricky due to two 

factors: (i) The period of oscillation in this case is very small so a computer 

would be needed to take measurements of the magnetic field strength. (ii) The 

magnitude of the induced magnetic field is very small hence very sensitive 

equipment would be needed. One way round this would be to place the 

inductor in a heat bath and measure the change in temperature of the water 

over a certain time, the corresponding energy change can then be calculated. 

This then could be compared to the energy loss predicted earlier. 
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6 Appendix 
6.1 Tables of data 
 

Table 1: Comparison of calculated and experimental maximum frequency for 

different damping resistances. 

Resistance (Ω) Calculated max freq (KHz) (ƒmax) Experimental max freq (KHz) 

0 29.1 ± 0.4 25.0 ± 0.5 

1000 28.8 ± 0.4 25.5 ± 1 

2000 28.1 ± 0.4 25.0 ± 1 

3000 26.8 ± 0.4 24.5 ± 2 

4000 24.9 ± 0.4 24.0 ± 2 

 

 

Table 2: Determination of Q factor from graph 1 (Qm) and calculated 

theoretical values from equation 10 (Qt). 

R (Ω) Vc
(res)/√2 (V) ∆ƒ (KHz) Qm ± ∆Qm Qt ± ∆Qt Qt corrected 

0 63.6 3 ± 1 8.33 ± 2.78 ∞ 7.61 ± 0.75 

1000 25.5 7.5 ± 1 3.40 ± 0.47 5.48 ± 0.12 3.18 ± 0.14 

2000 17.0 11 ± 1 2.27 ± 0.23 2.74 ± 0.06 2.01 ± 0.06 

3000 12.6 26 ± 1 0.94 ± 0.08 1.83 ± 0.04 1.47 ± 0.03 

4000 11.3 25.5 ± 2 0.94 ± 0.11 1.37 ± 0.03 1.16 ± 0.02 

 

 

6.2 Error Formulae 

(note that δ denotes the error on a value) 

 

6.2.1 Formulae for section 3.1 

From equation 5: 

ωο = √(1/LC) 

Hence: 

δ ωo = ωo √(¼ (δ L/L)2+ ¼ (δ C/C)2) 
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6.2.2 Formulae for section 4.3 

From equation 19: 

φ = sin-1(ab/cd) 

If we let ab/cd = x then: 

δφ/δx = 1/√(1- x)2 

Where: 

 δx = (ab/cd)√((δ ab / ab) 2 + (δcd / cd) 2) 

 

6.2.3 Formulae for table 1 in section 6.1 

From equation 6: 

ωmax
2 = ωo

2 – R2/2L2 

Hence: 

 δ ωmax = √ (4ωo
2 δωo

2 + ((R2  δR2) / L4) +((R4  δL2) / L6))  
   ωmax              2ωo

2 – (R2 / L2) 

And from equation 2: 

δƒmax = δωmax /2π 

 

6.2.4 Formulae for table 2 in section 6.1 

From equation 10: 

Qt = (1/R)√(L/C) 

Hence: 

δQt = Qt√((δR/R)2 + ¼(δL/L)2 + ¼(δC/C)2) 

 

From equation 8: 

Qm = ƒ/∆ƒ 

Hence: 

 δQm = Qm √ ((δƒ / ƒ) 2 + (δ∆ƒ / ∆ƒ) 2) 
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